
Technical Supplement:  
GPMatch Causal Inference Method  
 

1. Introduction 
 

In routine clinical practice, treatments are assigned deliberately by patients’ disease status. 
Sicker patients tend to receive more aggressive treatment. Therefore, the correlation between 

the treatment and the outcomes using the data collected from the real world cannot be used to 

inform treatment effect directly. Causal inference methods are specifically designed to remove 

the treatment-by-indication bias inherent in observational data for understanding the 

comparative effectiveness of treatment effect much like what we would obtain from 

conducting a randomized controlled trial. 

 

Most of the causal inference methods are developed considering single point treatment 

assignment that treatment is assigned only once and stays the same over time. In treating 

patients with chronic illness or prolonged condition, however, treatments are often time-

varying, adaptive according to the patient’s progress and responses to the previous treatment 
assignment. In our study, as depicted in Figure 1, the DMARD treatment is adaptive – the stage-

2 treatment assignment was determined based on how well patients progress after the initial 

treatment assignment.  In other words, the patient disease activities observed at the 6 months 

is the key consideration for the next medication prescription. In addition, the 6 months disease 

activities are major determinants to the 12 months study outcomes. Therefore, the 6 months 

disease activity measures are time-dependent confounders and also immediate outcomes at 

the 6 months.  Simply controlling for these intermediate disease activity measures will control 

away the true treatment effect of the time-varying adaptive strategy (Daniel et al. 2013; J. M. 

Robins, Hernán, and Brumback 2000).  Therefore, linear mixed modeling that simply includes 

the covariates cannot be used.  The commonly used causal inference methods designed for the 

point treatment assignment will not appropriately account for the time-dependent 

confounders, and thus they cannot be used directly.   

 

Daniel et al. (2013) provided a comprehensive review of three existing causal inference 

methods for dealing with time-dependent confounding, where g-computation formula is one of 

the most commonly used method. The g-computation formula was first suggested by Robins (J. 

Robins 1986).  The idea is to estimate the expected potential outcomes one stage at a time, 

then compute the missing potential outcomes at each stage, and then compute the missing 

potential outcomes. The method can be implemented using the many regression modeling 

techniques. When correctly specified, it provides accurate estimate of treatment effect.  

Recently,  Keil et al. (2018)  presented a parametric Bayesian’s g-computation  formula and 

suggested it can improve the accuracy of estimates of causal effects in small samples or sparse 

data.   The parametric modeling of causal inference could suffer when model is mis specified. 
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Flexible parameter rich Bayesian models can lessen the concern over model mis specification. 

For example, Roy et al. (Roy, Lum, and Daniels 2017) presented a nonparametric Bayesian’s 
marginal structural model utilizing both Dirichlet and Gaussian Process priors for point 

treatment assignment.  

 

The GPMatch is a Bayesian nonparametric g-computation formula method.  It utilizes the GP 

prior to offer a nonparametric flexible regression model, it also formulates GP covariance 

function as a matching tool, such that it resembles matching to control for the confounding 

bias. It can predict the missing potential outcomes by a weighted sum of observed data, with 

larger weights assigned to those data points in closer proximity and smaller weights to those 

data points further away. This appendix provides technical details of the method.  

 

2. Point Treatment Assignment 
 

For the ease of presentation, we first present the GPMatch method by considering a point 

treatment assignment (Ai). The GPMatch model fits the observed outcome data 𝑌𝑖 by a 

regression model on the sample covariates (𝑋𝑖),  𝑌𝑖 =  𝑋𝑖𝛽 + Ai𝜏 + ηi + 𝜀𝑖 ,    (1) 

for 𝑖 = 1, … , 𝑛, where 𝜂 ~ 𝐺𝑃(0, . ), and 𝜀𝑖 𝑖𝑖𝑑~𝑁(0, 𝜎02).  
Specifically, we define the GP Covariance function being proportional (denoted by ∝ symbol) to 

the squared exponential of the distance 𝑑𝑖𝑗, 𝐶𝑜𝑣(𝑌𝑖 , 𝑌𝑗) ∝ 𝑒𝑥 𝑝(−𝑑𝑖𝑗2  ),  
Where 𝑑𝑖𝑗=distance in the baseline covariate space between the 𝑖𝑡ℎ and the 𝑗𝑡ℎpatients, for 𝑖 =1 … 𝑛, 𝑗 = 1, . . 𝑛.  In other words, for any pair of patients, we assume their correlations are 

proportional to the distance  (𝑑𝑖𝑗) between the two. The value of 𝑑𝑖𝑗  is determined by the pre-

treatment covariates of each pair of patients. For example, we may define   

𝑑𝑖𝑗 = √∑ |𝑣𝑘𝑖 − 𝑣𝑘𝑗  |2𝜙𝑘
𝑞

𝑘=1 , 
where 𝑣𝑘𝑖 and 𝑣𝑘𝑗 are values of the pre-treatment covariates, for 𝑘 =  1, … , 𝐾.  Of note, the 𝑉 

variable could be a subset of 𝑋, centered to mean 0 and scaled to variance of 1.   For example, 

the 𝑣𝑘𝑖 could be standarized values of MD global, active joint count and patient wellbeing for a 

given patient prior to treatment assignment; while X could include the post-treatment variables 

such as the follow up time. Following such GP prior specification, patients with similar disease 

activities are considered highly correlated. On the other hand, patients with very different 

presentations of disease activity are only weakly or not correlated. The parameter  𝜙𝑘 

Supplementary material RMD Open

 doi: 10.1136/rmdopen-2019-001091:e001091. 6 2020;RMD Open, et al. Huang B



determines the distance beyond which patients are considered independent. It is estimated 

from fitting the data.   

After fitting the above GP regression, GPMatch estimates the missing potential outcomes for 

any given patients (denoted by subscript *) by  

�̂�∗(𝑎) = 𝑎�̂� + ∑ �̂�∗𝑖(𝑌𝑖𝑛
𝑖=1 − 𝐴𝑖�̂�), 

Where �̂�∗𝑖 is the i-th element of the standardized 𝒘∗ such that ∑ �̂�∗𝑖𝑛𝑖=1 = 1, with 𝒘∗ =𝒌∗(𝑣)′ 𝚺−𝟏, 𝒌∗(𝑣)𝑛×1 = {𝐶𝑜�̂�(𝑌∗, 𝑌𝑖)}𝑖=1𝑛  , 𝚺n×n = {𝐶𝑜�̂�(𝑌𝑖, 𝑌𝑗)}𝑖,𝑗=1𝑛
.   We see �̂�∗𝑖 is proportion 

to the estimated covariance between the given patient and each i-th patients in the observed 

data. The �̂� is the estimated treatment effect. With the squared exponential distance 

covariance function defined above, the 𝑤𝑖  quickly decline as the distance increase. Thus, the 

estimate of �̂�∗(𝑎)
 is primarily determined by a limited set of data points from patients who are 

part of the “matching” neighborhood. For this reason, we name this method GPMatch.  

The squared exponential distance function can be considered as an alternative distance 

measure to the Mahalanobis distance (MD),  which is defined by 

𝑀𝐷𝑖𝑗 = √(𝑣𝑖 − 𝑣𝑗  )′𝑆−1 (𝑣𝑖 − 𝑣𝑗  ) 𝑖𝑓 |𝑣𝑖𝑘 − 𝑣𝑗𝑘 | < 𝑐, 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑞;∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  

where 𝑐 ∈ 𝑅+ is the chosen caliper for MD matching, S is the sample variance-covariance 

matrix of confounding variables V. The MD matching requires specification of a caliper. Smaller 

c leads to more precise matching but often results in a serious reduction in sample size after 

matching. In GPMatch, no caliper is required. Instead, the length scale parameters (𝜙𝑘), which 

governs the extent to which the data points are matched, are estimated from the data. The 

GPMatch allows different length scale parameters for different confounding variables, such that 

it acknowledges that some confounders may play a relatively more important role in matching 

than other confounders. The variables with larger value of 𝜙𝑘 parameters are considered more 

important than those with smaller values.   

For checking balance, we compare the two treatment groups on a central tendency and a 

dispersion measure for each of the k-th baseline pre-treatment covariates, 𝑘 = 1, . . , 𝑞. Both 

central tendency and dispersion can be expressed as a general function 𝑔𝑘(𝑎), for 𝑎 = 0,1: 

𝑔𝑘(𝑎) = 1𝑛𝑎 ∑ 𝑔(𝑋𝑘𝑖 − �̃�𝑘𝑖)𝑛
𝑖=1𝐴𝑖=𝑎 , 
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where, �̃�𝑖 = ∑  �̂�𝑖𝑗𝑋𝑗𝑛𝑗=1 , a weighted sum of observed baseline covariates. The weights are 

estimated from fitting GPMatch model.  For central tendency measure, 𝑔𝑘(. ) is the identical 

function; for the dispersion measure, 𝑔𝑘(. )  is the absolute value function.   

To assess the extent to which GPMatch is able to achieve better balance, we compare the 

balance measure against the unadjusted simple linear regression model 𝑌~𝐴, in which case 𝑤𝑖𝑗 = 1 and �̃�𝑘𝑖 = �̅�𝑘. Thus under the identical function, we have a group mean difference 𝑔𝑘(1)  − 𝑔𝑘(0) = �̅�𝑘1 − �̅�𝑘0. 
Under the absolute value function, we have a group difference on the mean absolute deviation 

(MAD) 𝑔𝑘(1)  − 𝑔𝑘(0) = ∑ |𝑋𝑘𝑖 − �̅�𝑘|𝑖∈(𝐴𝑖=1) − ∑ |𝑋𝑘𝑖 − �̅�𝑘|𝑖∈(𝐴𝑖=0) . 
In a randomized trial setting, it is easy to see that both measures are expected to be 0.  

In the GPMatch, �̃�𝑖 = ∑ �̂�𝑖𝑗𝑋𝑗𝑛𝑗=1  is estimated by the weighted average data points from the 

“matched” neighborhood.  When matched well, the method should be able to achieve 

comparable location and dispersion measures between two treatment groups. Plotting these 

two measures from GPMatch (after adjustment) compared against the same measures from 

the simple linear regression (before adjustment) allows us to visually inspect the balance after 

GPMatch. It also offers a way of selecting baseline covariates that needs to be balanced.   

 

3. Time-varying Adaptive Treatment 

Let 𝑌1(𝑎0)
 denote the potential outcome 6-month cJADAS score that would have observed had 

the patient treated on the bDMARD (𝑎0 = 1) or nbDMARD (𝑎0 = 0) at the time of diagnosis. 

Let 𝑌1(𝑎0,𝑎1)
 denote the potential outcome cJADAS score at the 12-month that would have been 

observed had the patient treated by the 𝑎0 at the baseline followed by 𝑎1 at the 6-month, 

where 𝑎𝑡 corresponds to the nbDMARD(𝑎𝑡 = 0) and bDMARD(𝑎𝑡 = 1) treatment at the time 𝑡 = 0 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒),1(12 − 𝑚𝑜𝑛𝑡ℎ).  𝑋0 denote the baseline covariates, and 𝑋1(𝑎0) denote the 

covariates measures, including disease progression, at the 6-month pre- 2nd-stage treatment 

assignment after treated by 𝑎0. To answer the study CER questions, we focused on estimating 

the following average causal treatment effect. 

1) The average treatment effect at stage 1 (ATE@stage1): �̂�(𝑌1(1) − 𝑌1(0) |𝑋0);  This is the 

treatment of the initial DMARD assignment. 

2) The average treatment effect at stage 2 conditional on the past treatment assignment 

and the patient’s progression at the 6-month (CATE@Stage2): �̂� (𝑌2(𝑎0,1) −
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𝑌2(𝑎0,0) | 𝑋0, 𝑋1(𝑎0) = 𝑥1, 𝑌1(𝑎0) = 𝑦1).  This is the treatment effect of the 2nd stage 

DMARD assignment given the past treatment and disease progression.  

3) The marginal average treatment effect at the 12-month (the study endpoint) 

(MATE@Stage2): 𝐸(𝑌(𝑎0,𝑎1) − 𝑌(𝑎0′,𝑎1′) |𝑋0).  This is the overall treatment effect over 

the 12 months, following different treatment sequences.  Of note, this treatment effect 

is averaged over the intermediate responses to the initial treatment response.  

For evaluating causal treatment effects of time-varying adaptive treatments, the GPMatch for 

the point-treatment assignment can be easily extended following the Bayesian’s g-computation 

formula. The GPMatch model predicts the posterior of the missing potential outcomes at each 

decision point, in a sequential generative manner. The potential outcomes for any given 

treatment history are estimated, and the averaged treatment effect is estimated by the 

contrast between an intervention vs. an comparator adaptive treatment strategies (ATS) at the 

final study endpoint. Finally, optimal ATS can be identified by maximizing the potential 

outcomes.  Box 1 outlines the algorithm used for a two-stage ATS assignment. 

Box 1. GPMatch Algorithm for 2-stage Adaptive Treatment Strategy Assignment 

1. Stage-1 Modeling 

1.1. Fit the GPMatch model for all the observed intermediate outcomes 𝑋𝑖1 immediately 

prior to the second treatment decision point, by weighted matching on important 

baseline covariates (𝑋𝑖,0). Here 𝑋𝑖1 includes the outcome of interest (e.g. cJADAS 

scoer at the 6 month) and other disease progression measurements (e.g. AJC, LOM, 

ESR measures at the 6 month) to assess how well patients responded to the first 

treatment assignment.   

1.2. Check balance on the mean and the MAD between two groups on all their baseline 

pre-treatment assignment variables. Including any additional covariates if the 

balance has not been achieved.  

1.3. Generate posterior MCMC for all model parameters, estimate posterior of [�̂�𝑖,1(0), �̂�𝑖,1(1)|𝐴𝑖,0, 𝑋𝑖,0, 𝑋𝑖,1] for each patient using the Stage-1 model. Save the 

predicted  �̂�𝑖,1(0), �̂�𝑖,1(1) for the later g-computation step. 

1.4. Estimate the ATE@stage1 for intermediate outcome and for all intermediate 

treatment response covariate measures. 

 

2. Stage-2 Modeling 

2.1. Fit GPMatch model for the final outcome 𝑌𝑖. Here, 𝑌𝑖 is the cJADAS score at the 12- 

month. The GPMatch matches patients on their baseline treatment (𝐴0), baseline 

covariates (𝑋𝑖0) and the treatment responses (𝑋𝑖1) measured at the end of first stage.  

This is because the second stage treatment assignment (𝐴1) is determined adaptively 

in response to the patients’ first stage assignment, patients’ initial disease status and 

responses to the initial treatment assignment.  

2.2. Check balance on all 2-stage pre-treatment covariates and ensure all stage-2 

covariates are balanced.  

Supplementary material RMD Open

 doi: 10.1136/rmdopen-2019-001091:e001091. 6 2020;RMD Open, et al. Huang B



2.3. The GPMatch estimates the treatment effect from the second stage.  

2.4. Generate posterior MCMC for all second stage model parameters, and estimate the 

posterior of [�̂�𝑖(00), �̂�𝑖(01), �̂�𝑖(10), �̂�𝑖(11)|𝐴𝑖,1, 𝐴𝑖,0, 𝑌𝑖 , 𝑋𝑖,1, 𝑋𝑖,0]   

2.5. Estimate the conditional ATE, CATE@stage2 for treatment outcome at the end of 

second stage, conditional on the treatment history and patient responses at the end 

of stage1. 

 

3. G-computation  

3.1. Integrate out the intermediate responses, estimate the marginal posterior [�̂�𝑖(00), �̂�𝑖(01), �̂�𝑖(10), �̂�𝑖(11)| 𝑋𝑖,0] 

3.2. Estimate the marginal ATE, MATE@stage2 for all patients 

4. Software and Data Sharing 
The GPMatch method has been implemented in a graphic user inference online application that 

is accessible to general public at https://pcats.research.cchmc.org.  It offers capacity to study 

comparative effectiveness of both single point and 2-stage adaptive treatment strategies. 

Data used in this CER study can be made available upon signing Data Sharing Agreement 

between two institutes.  
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